universität innsbruck

D8.1 Cyber Risk Management

Framework and a sector-specific case study

Gegründet im Jahr 1669, ist die Universität Innsbruck heute mit mehr als 28.000 Studierenden und über 4.000 Mitarbeitenden die größte und wichtigste Forschungs- und Bildungseinrichtung in Westösterreich. Alle weiteren Informationen finden Sie im Internet unter: www.uibk.ac.at.

Agenda

- A. Cyber risk management framework
- B. Sector-specific remarks
- C. Case study: Credit card fraud
 - A. Motivation
 - B. Research design
 - C. (Preliminary) results

Cascade model of cyber risk arrival

- For a comprehensive risk management all information is required.
- ► Each risk factor (e.g. Threats) comprises a vector of risks.
- Risk factors are only partially under the control of the firm.

cf. Böhme et al. 2016. A Fundamental Approach to Cyber Risk Analysis, based on [Ransbotham and Mitra, 2009].

Risk management

Risk management frameworks

Top-down: structure the risk management process

- ISO/IEC 27000-series of information security standards:
 ISO/IEC 27005 Information security risk management.
- ► NIST SP 800-30 Risk Management Guide for Information Technology Systems

Bottom-up: identify risk factors

- Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE®) framework
- ► Factor analysis of information risk (FAIR) classification
- Vocabulary for Event Recording and Incident Sharing (VERIS)

[ISO/IEC, 2014, Stoneburner et al., 2002, Cebula et al., 2010, ISACA, 2009, Veris, 2016]

Cyber risk treatment

Cyber risk treatment highly depends on characteristics of each organization.

Cyber insurance as a tool for risk transfer

Problems preventing the growth of a cyber insurance market:

- Lack of historic data to calculate premiums
- ▶ Information asymmetries: inhibit the monitoring of policy holders
 - Adverse selection
 - Moral hazard
 - Insurance fraud
- Dependent risks: potentially causing catastrophic events
 - Interdependent security
 - Risk correlation

Increasing interest by insurers to develop the market.

Agenda

- A. Cyber risk management framework
- B. Sector-specific remarks
- C. Case study: Credit card fraud
 - A. Motivation
 - B. Research design
 - C. (Preliminary) results

E-CRIME sectors

- Financial
- Retail
- Transport
- Energy
- Health

Financial and Retail sectors

Selected key risks	Risk treatments
Loss, theft, or alteration of customer data, e.g. through hacking	Risk mitigation: hardened infra- structure, back ups; Risk transfer: outsourcing services.
Business interuption, through hacking, DDoS attacks or ransomware	Risk mitigation: employee trainings
Consumer-facing fraud, e.g. phishing, identity theft, or payment card fraud	Risk mitigation: fraud departments; Risk avoidance: avoiding market segments; Risk acceptance: e.g. for customer convenience

Customer interaction via the Internet imposes **inevitable risks** with various treatment alternatives.

Transport and Energy sectors

Transport:

Selected key risks	Risk treatments
Business interruption due to unavailable IT systems	Risk mitigation: network segmentation, code reviews
E-ticket fraud	Risk avoidance: avoid e-tickets;

Energy:

Selected key risks	Risk treatments
Business interuption and physical damage to systems	Risk mitigation: network segmentation, "air-gaps", BYOD regulation

Business interruption is the major risk in both sectors.

Healthcare sector

Selected key risks	Risk treatments	
Liabilities after data breaches	Risk mitigation: basic controls; Risk transfer: high demand for cy- ber insurance.	
Interruption of health care systems	Risk mitigation: employee trainings; Risk acceptance: to not interfere with work processes.	

Liabilities are an emerging problem, cyber insurance might be a viable treatment option.

Summary sector-specific risk assessment

Findings across sectors:

- Businesses in all non-ICT sectors rely increasingly on their ICT systems. Business interruption is a key risk across sectors.
- ► Cyber insurance as a means for cyber risk transfer is not widely adopted yet. The health sector is promising.

Limitations of sector-specific risk assessment:

- Organizations in a single sector are still very heterogeneous and face a large variety of risks.
- Organizations use all risk treatment alternatives in different contexts.

Identifying key risks and suggesting treatment options on the sector level is difficult.

Agenda

- A. Cyber risk management framework
- B. Sector-specific remarks
- C. Case study: Credit card fraud
 - A. Motivation
 - B. Research design
 - C. (Preliminary) results

Credit cards as a target for criminals

Chart 4 Use of payment instruments in the EU (2000-12)

[ECB, 2014]

Observations of credit card (cc) fraud:

- Public data breaches, e.g. 56m. cc numbers stolen at Home Depot. Such breaches are likely to occur [Edwards et al., 2016].
- ► Trading on black markets: 100 490 unique cc numbers by monitoring IRC chats for 7-month [Franklin et al., 2007].
- Victimization surveys: 4.8% of UK Internet users (3.5% in Germany, 2.7% in Italy, . . .) [Riek et al., 2016].

Costs for the victims

High compensation payments by financial service providers.

Direct costs for the credit card issuer

- Charge-backs (which cannot be transferred to the merchant)
- + Issuing a new credit card
- + Communication with the customer
- + Opportunity costs (if victims do not use the new credit card)
- Total costs for the issuer

Potential opportunity costs:

- Victims do not use their new credit card
- Victims change to other payments methods

Risk management requires quantification of the costs of a fraud incident.

Related work

Cross-sectional surveys:

- ▶ 8% of Home Depot customers (8% Target) reported to have stopped using their credit card after the data breaches [Stanton, 2015].
- >50% of German credit card owners reported to use other payment methods after experiencing credit card fraud [Inscoe, 2012, 2014].
- ▶ In 2014, 22% of victims reported, that they do not use the replacement card (36% in 2012; [Inscoe, 2012, 2014]).

Academic studies:

- Cybercrime experience and perceived risk of cybercrime lead to avoidance of online services [Riek et al., 2015].
- Costs of automatically reissuing cards seems to be higher than waiting until fraud is attempted [Graves et al., 2014].

Missing pieces: Actual behavior of victims in a clearly defined context.

Agenda

- A. Cyber risk management framework
- B. Sector-specific remarks
- C. Case study: Credit card fraud
 - A. Motivation
 - B. Research design
 - C. (Preliminary) results

Study

Cooperation with PLUSCARD:

- German credit card processor
- F-CRIME stakeholder
- Victims of credit card fraud are approached immediately after an incident and asked to participate.
- Data is collected with standardized telephone interviews and monitoring of financial transactions.
- Fieldwork started in December 2016 and is still on-going (preparations since late 2015).

Contribution

Empirical studies of victim behavior after fraud incidents:

Use of after incident	Self-reported	Actual behavior
Online shopping	Riek et al. [2015]	(<u>~</u>)
Credit card online	Inscoe [2014]	✓
Credit card offline	Stanton [2015]	✓
Other payments online	Inscoe [2014]	
Other payments offline	Stanton [2015]	
Use of before incident		
Online shopping	~	(<u>~</u>)
Credit card online	~	~
Credit card offline	~	✓
Other payments online	✓	
Other payments offline	✓	

Research design

Natural experiment integrated into each fraud case:

- ► Telephone interviews: self-reported behavior, perceptions
- Actual behavior: aggregated transactions before & after the incident

Time line of the (on-going) field work

Self-reported use statistics

Base: 65 interviewed victims.

Use intention in the future

28% of victims intend to use their credit card less online (21% offline)

Base: 65 interviewed victims.

Visual analysis of the interrupted time series (1)

Average card use before/after incident (n: 75)

Visual analysis of the interrupted time series (3)

Median card use before/after incident (n: 75)

Summary of (preliminary) results

Use of after incident	Self-reported	Actual behavior
Online shopping	18% intend less	(Av.m.R.: 115€)
Credit card online	28% intend less	Av.m.T.: 1.7
Credit card offline	21% intend less	Av.m.T.: 2.3
Other payments online	30% switched	
Other payments offline	10% switched	
Use of before incident		
Online shopping	34% weekly	(Av.m.R.: 157€)
Credit card online	15% weekly	Av.m.T.: 2.5
Credit card offline	26% weekly	Av.m.T.: 3
Other payments online	40% prefer PayPal	
Other payments offline	57% mostly cash	

Av.m.T.: Average monthly transactions, Av.m.R.: Average monthly revenue

Additional insights

From the complete data set:

- Sophisticated interrupted time-series models, e.g. ARMA.
- Quantification of opportunity costs.
- User group analysis comparing frequent with non-frequent or primarily online with primarily offline users.

From the telephone interviews:

- Direct and indirect costs for the victims, including time.
- Victim's attitudes towards different payment methods.
- Indirect security costs through new 2-factor auth. methods.

Results will be made available when the data collection is complete.

Sources I

- J. J. Cebula, M. E. Popeck, and L. R. Young. A taxonomy of operational cyber security risks. Technical report, Software Engineering Institute, 2010.
- ECB. Card payments in europe? a renewed focus on sepa for cards. Technical report, European Central Bank (ECB), 2014. URL https://www.ecb.europa.eu/pub/pdf/other/cardpaymineu_renfoconsepaforcards201404en.pdf.
- B. Edwards, S. Hofmeyr, and S. Forrest. Hype and heavy tails: A closer look at data breaches. *Journal of Cybersecurity*, page tyw003, 2016.
- J. Franklin, A. Perrig, V. Paxson, and S. Savage. An inquiry into the nature and causes of the wealth of internet miscreants. In *Proceedings of the 14th ACM Conference on Computer and Communications Security*, CCS '07, pages 375–388, New York, NY, USA, 2007. ACM. doi: 10.1145/1315245.1315292.
- J. Graves, N. Christin, and A. Acquisti. Should payment card issuers reissue cards in response to a data breach? In WEIS: Workshop on the Economics of Information Security, 2014, WEIS '14, 2014.

Sources II

- S. W. Inscoe. Global consumers react to rising fraud: Beware back of wallet. Technical report, Aite Group, 2012. URL
 - https://www.aciworldwide.com/-/media/files/collateral/trends/aci-aite-global-consumers-react-to-rising-fraud-1012.pdf.
- S. W. Inscoe. Global consumers: Losing confidence in the battle against fraud. Technical report, Aite Group, 2014. URL
 - https://www.aciworldwide.com/-/media/files/collateral/trends/2014-global-consumer-fraud-survey---part-1and-2.pdf.
- ISACA. The risk IT framework excerpt. Technical report, Information Systems Audit and Control Association (ISACA), 2009.
- ISO/IEC. ISO/IEC 27000:2014: Information technology Security techniques Information security management systems Overview and vocabulary. Standard, International Organization for Standardization/International Electrotechnical Commission (ISO/IEC), 2014.

Sources III

- S. Ransbotham and S. Mitra. Choice and chance: A conceptual model of paths to information security compromise. *Information Systems Research*, 20(1):121–139, 2009.
- M. Riek, R. Böhme, and T. Moore. Measuring the influence of perceived cybercrime risk on online service avoidance. *IEEE Transactions on Dependable and Secure Computing*, 2015.
- M. Riek, R. Böhme, M. Ciere, C. Gañán, and M. J. G. van Eeten. Estimating the costs of consumer-facing cybercrime: A tailored instrument and representative data for six EU countries. In *Workshop on Economics of Information Security (WEIS)*, University of California, Berkeley, CA, USA, 2016.
- J. Stanton. Payment card data breaches: How does the consumer respond? Technical report, 2015.
- G. Stoneburner, A. Goguen, and A. Feringa. Risk management guide for information technology systems. Technical report, National Institute of Standards and Technology (NIST), 2002.
- Veris. Vocabulary for Event Recording and Incident Sharing. Technical report, Veris, 2016.